Scaling function for self-avoiding polygons

نویسندگان

  • C. Richard
  • A. J. Guttmann
چکیده

Exactly solvable models of planar polygons, weighted by perimeter and area, have deepened our understanding of the critical behaviour of polygon models in recent years. Based on these results, we derive a conjecture for the exact form of the critical scaling function for planar self-avoiding polygons. The validity of this conjecture was recently tested numerically using exact enumeration data for small values of the perimeter on the square and triangular lattices. We have substantially extended these enumerations and also enumerated polygons on the hexagonal lattice. We also performed Monte-Carlo simulations of the model on the square lattice. Our analysis supports the conjecture that the scaling function is given by the logarithm of an Airy function.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scaling prediction for self-avoiding polygons revisited

We analyse new exact enumeration data for self-avoiding polygons, counted by perimeter and area on the square, triangular and hexagonal lattices. In extending earlier analyses, we focus on the perimeter moments in the vicinity of the bicritical point. We also consider the shape of the critical curve near the bicritical point, which describes the crossover to the branched polymer phase. Our rece...

متن کامل

Scaling function and universal amplitude combinations for self-avoiding polygons

We analyse new data for self-avoiding polygons (SAPs), on the square and triangular lattices, enumerated by both perimeter and area, providing evidence that the scaling function is the logarithm of an Airy function. The results imply universal amplitude combinations for all area moments and suggest that rooted SAPs may satisfy a q-algebraic functional equation. PACS numbers: 05.50+q, 02.10.AB, ...

متن کامل

Area Distribution and Scaling Function for Punctured Polygons

Punctured polygons are polygons with internal holes which are also polygons. The external and internal polygons are of the same type, and they are mutually as well as self-avoiding. Based on an assumption about the limiting area distribution for unpunctured polygons, we rigorously analyse the effect of a finite number of punctures on the limiting area distribution in a uniform ensemble, where p...

متن کامل

Distribution of the distance between opposite nodes of random polygons with a fixed knot

We examine numerically the distribution function f K (r) of the distance r between opposite polygonal nodes for random polygons with a fixed knot type K. Here we consider some knots such as ∅, 3 1 and 3 1 ♯3 1. In a wide range of r, the shape of f K (r) is well fit to the scaling form [1] derived from the field theory for self-avoiding walks. The fit yields the exponents ν K = 1 2 and γ K = 1, ...

متن کامل

Scaling behaviour of two-dimensional polygon models

Exactly solvable two-dimensional polygon models, counted by perimeter and area, are described by q-algebraic functional equations. We provide techniques to extract the scaling behaviour of these models up to arbitrary order and apply them to some examples. These are then used to analyze the unsolved model of self-avoiding polygons, where we numerically confirm predictions about its scaling func...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003